A photo of Vivek Jayaram

Hi I'm Vivek Jayaram, a machine learning researcher at University of Washington. My research interests lie at the intersection of machine learning, audio, music, and vision. Some of the conferences I've been a part of are CVPR, ECCV, and ICCV.


Source Separation with Deep Generative Priors

Vivek Jayaram*, John Thickstun*
ICML 2020

Generative modeling has gotten so good at producing unconditional samples, but other tasks like source separation don't produce equally convincing results. In this paper we propse a new way to tap into state-of-the art generative models to solve source separation. We call our method BASIS Separation (Bayesian Annealed SIgnal Source Separation).


Background Matting: The World is Your Green Screen

Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, Ira Kemelmacher-Shlizerman
CVPR 2020

Background replacement has many applications from VFX to privacy (anyone tried to use zoom's virtual background??). In this work we push the state of the art for separating a subject from their background.


Image of a music spectrogram

Pychorus: Finding Choruses in Songs with Python

Vivek Jayaram
Towards Data Science

Do you ever feel like songs nowadays repeat themselves a lot? This was the motivation for a recent method I worked on for detecting choruses in music. By looking for repetition in the spectrogram it's possible to discover song structure. The method is fast, runs on the cpu, and can be installed with pip. It works on a wide variety of music genres as well.


Image of Caltech Birds dataset

Multiplicative Feature-Based Attention for Transfer Learning in CNNs

Vivek Jayaram
Undergraduate Thesis

During my senior year I was a researcher in the Cox Lab at Harvard at the intersection of neuroscience and computer vision. My thesis project borrowed the idea of Feature Based Attention from neuroscience to improve visual classification in neural networks.

Image of Caltech Birds dataset